An Energy Lawyer Looks At The Mobility Transition

Rob James Pillsbury Winthrop Shaw Pittman LLP

October 20, 2021 Environmental Law & Policy Colloquium Stanford Law School

The energy mosaic

• Resources

- Primary—fossil, biofuels, solar, wind, geothermal, hydro, nuclear
- Secondary—electricity, refined fuels (gasoline, diesel, new fuels)
- Transmission, storage, operation, decommissioning

• Applications

- Industrial, commercial, infrastructure, ag, health, education, public
- Mobility: Transportation (land/sea/air/space), transit, logistics

• Policies

- $_{\circ}~$ Regulation of extraction, production, distribution and use
- $_{\circ}~$ Regulation of externalities and of competition
- $_{\odot}\,$ National security, personal security, and other values

The energy transition

- Renewable power generation
- Storage of power and heat
- Carbon consciousness for fossil fuels
- Hydrogen(s)
- Efficiency in applications
- Grid enhancements and distributed resources
- Greening of applications (including mobility)
- Advanced nuclear and other game-changing technologies
- *Throughout*, make energy affordable, sustainable, secure, just and equitable

Robert A. James, Candor, Climate, and the Energy Transition, 11 JOURNAL OF LAW (8 J. LEGAL METRICS) (forthcoming)

Where does an energy law practice stop?

- Extraction, production, generation, transmission, storage, sure ... but ... what about
- Smart and green buildings?
- Technology for grid and distributed resources?
- Urban, suburban and rural planning—at local, regional or national levels?
- Employment, trade and investment policy?
- Supply chains and the circular economy?
- Charging station infrastructure?
- Motor vehicles and public transit equipment and pathways?

GoMentum

- New client since Amber asked me to speak (*whew!*)
- Venture of the American Automobile Association
- <u>http://gomentumstation.net/</u>
- Military ghost town returning to city of Concord
- Perfect conditions for testing self-driving motor vehicles
- Public and private parties' goal to foster more sophisticated R&D for autonomous and connected vehicles and infrastructure
- <u>https://www.youtube.com/watch?v=rT9AqjVIhCA</u>

Today, examine the mobility transition

- Transportation and transit (fixed and variable)
- From cars to bikes, e-bikes and scooters
- From owned vehicles to car sharing, ride sharing, gig economy
- From internal combustion (including diesel) to renewable propulsion
- Hybrids, plug-in hybrids, electric (EV) and H_2 /fuel cell vehicles
- Making the vehicles, the infrastructure, and the life-cycle
- Connected vehicles (CVs) and autonomous vehicles (AVs)
 - How do we plan for and incentivize supply and manufacture?
 - How do we forecast and incentivize demand?
 - What else in the world will change?
 - Who wins and loses? How will we address equity and other values?

The once and future EV

- EVs c 1900, but ICEs prevail for most applications
- Not all, though—trolleys, some locomotives. DC v AC
- Game changers since 1990s: batteries/fuel cells, fossil v renewable technology, generation economics, and climate change
- Niches in 2000s & 2010s—hybrids, EV-1, Leaf, Volt, Tesla
- 2020s: California all new ZEVs by 2035, Biden policies, Ford F-150
- Not just batteries—also hydrogen and hydrogen fuel cells
- "U.S. Automakers Aspire to 50% EVs by 2030"
- International Energy Agency Global EV Outlook 2021

EV supply and demand

- How do you make EVs for the entire economy?
- What materials and equipment needed at scale? Supply chains already perilous in 2020* and 2021**
- Ford: Commercial vehicles "10 years behind" personal vehicles; India behind Europe, China and even the U.S.
- Driving EV demand beyond the coastal niches
- Vehicles as mass distributed storage: Texas cold snap
- EVs can power your home! PUC policies needed to allow sales back into the grid

What does an EV economy look like?

- Batteries—currently lithium-ion; iron-phosphate flow on way?
- Motors—rare earths and challenging metals
- Technology—from 25nm to 10nm or smaller chip features
- Charging technology—home, central, battery swaps and all the associated infrastructure
- Hydrogen and fuel cell alternatives
- Cost and availability, equity—who can afford the full cost of the new EVs?

What does an EV economy leave in its wake?

- Changes in manufacture—traction motors compared with ICEs need fewer and differently skilled workers (geography, training, union issues); global and local supply chain and logistics issues
- Changes in distribution—will EVs be purchased mostly in fleets? Impact on competition, car dealers, financing?
- Changes in charging—what happens to gasoline stations, aftermarket? Different time of day of electricity draws? End of free charging?
- Less repair and maintenance needs (apart from spent batteries)—impact on car repair, insurance, focus of liability?
- Ongoing and new safety and environmental risks—battery fires, ICE swaps, disposal issues, decommissioning?

Overlay connected vehicles (CVs)

- CVs communicate bidirectionally with external systems
- U.S. Department of Transportation, <u>CV Basics</u>
- GM Onstar (1996), expansion to many manufacturers and fleets
- "V2X" technology is already here—to manufacturer, infra, other vehicles, pedestrians, devices, grid, net, cloud
- Open source standard (GSM), Google OAA, Apple CarPlay; export job to smartphones plus telematics box
- Privacy and cybersecurity risks, energy consumption

Now, overlay autonomous vehicles (AVs)

- Add sensors (LIDAR/RADAR (real-time objects), HD GPS (location to the centimeter), Odometry (change in position and velocity), Inertial Measurement Units (IMUs for force, angular rate, orientation), and CV
- Advanced control systems, neural networks and machine learning
- SAE AV classes 0 (beeps, ABS), 1 (hands on, cruise), 2 (hands off, correction), 3 (eyes off, accident reaction), 4 (mind off, geofencing), 5 ("steering wheel optional")
- Legal, policy (and marketing) issues: safety, liability, security, cybersecurity, ethics;
- Transition from all-human to all-robot is tricky; see Kenneth Abraham & Robert Rabin's <u>New Legal Regime for a New Era (</u>"manufacturer enterprise responsibility")
- Unemployment for drivers and other mobility employees (robot taxes), even fewer organ donations
- The counter: 1.3MM killed, 20-50MM injured *annually* in vehicle accidents

What roles will lawyers play?

- **Regulatory** what policies will apply and change as technologies are rolled out?
 - Beginning-state, transitional-state, next-state (dialectical)
 - Environmental, economic, transportation, manufacturing, technology, security, cybersecurity...
- Financial what will be the sources and uses of funds and how will they be managed?
 - Connecting manufacturers, tech developers, investors/financiers, EV/AV/CV fleets, users
 - Public-private partnerships, development and finance structures, logistics, sales and distribution
 - Which entities will own and govern the transition?
- Risk Management who will be liable when the LIDAR goes dark or haywire? Or someone hacks into the AV or CV network? Or a major blackout occurs?
 - Part answered at the front end assigning liability/responsibility in tort law, contract, insurance, business organizations, and government policies
 - Part answered at the back end prospects for disputes, and wholesale or individual resolution

Rob James Pillsbury Winthrop Shaw Pittman LLP San Francisco / Houston +1.415.983.7215 / +1.713.276.7689 rob.james@pillsburylaw.com LinkedIn @robjames415 twitter @diogenes510

